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When trying to remember a specific event or autobiographical memory, it can often feel like we
are searching through our vast store of memories to find the relevant memory. Arguably no exper-
imental task evokes this process more than the free recall paradigm. In this paradigm, a participant
is presented with a list of items, and then must recall as many items as possible in any order. As
such, the participant is constrained to recalling information from a specific list, not unlike searching
through one’s memory of a specific time and place. This chapter introduces the experimental set-
up and then overviews some of the major theoretical approaches to understanding memory search.
Details of dynamics in free recall responses are then discussed in light of these theories. How par-
ticipants initiate recall, transition between items, and terminate recall provide insight into memory
search, organization, representation and association. Insights from other memory paradigms are
then described, and the chapter ends with a discussion of the ecological validity for characterizing
memory search in experimental settings.

Keywords: cued recall; episodic memory; free recall; memory search; retrieval



1 Introduction

1 Introduction

“What did you do last weekend?”

To answer this question, you must retrieve memories associated with a specific range of time.

Such memories, formed by integrating information into an episode or event, and associating the

episode with the time and place it occurred, are termed episodic memories (Tulving, 1972). Yet the

above question distinguishes itself from other assessments of episodic memory in two important

ways. First, this question requires retrieval of the relevant information without any additional cues

or reminders from the questioner. Second, the question does not impose a specific order on the

information being retrieved, so long as the information occurred during the specified time window

(last weekend). For instance, you could recount an event from Sunday morning before discussing

what you did on Friday evening. The free recall paradigm is meant to encapsulate just this set of

restrictions on memory, but under conditions in which researchers have more control over what

is experienced and what is tested. As described in more detail below, this paradigm is typified

by presenting a participant with a list of items one at a time, and then asking the participant to

recall as many items as possible from that list, in any order. Note that, in the context of these

experimental paradigms and thus this chapter, an instruction to recall means to state one’s internal

retrievals overtly or explicitly. Thus, in this chapter, it is assumed that the process of recall refers

to reporting an item retrieved from memory, and a recalled item, or recall, refers to the reported

item. By contrast, an item which is retrieved is generated internally by a participant, but may or

may not be reported.

The open-ended nature of free recall provides a rich set of observations from each participant.

Beyond a binary distinction between recalled and non-recalled items, researchers may also charac-

terize the order and timing of a participant’s recalls. In the weekend example, recalling lunch with

friends may evoke recall of another meal-related activity, or may evoke recall of another activity

with friends. Such transitions between recalls can inform our understanding of the relationships

between what is recalled. At the same time, this open-ended task can provide additional challenges

when compared to other episodic memory tasks. That is, in free recall, the participant must search
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through memory with a minimal cue: to recall items from the most recent (or cued) list. By con-

trast, other episodic memory tasks may present a participant with a previously presented item or

features of that item, which helps to promote retrieval of correct memories. (In the example above,

this might be more akin to asking ”Did you go to the lab this weekend?” or showing a picture

of your lab and asking if you went there.) As a result, free recall performance tends to be lower

when compared to other episodic memory tasks in healthy participants (e.g. Tulving, 1985). In

addition, when compared to healthy participants, those participants exhibiting episodic memory

impairments, from neurological disorders including schizophrenia, dementia, or even healthy ag-

ing, exhibit more striking reductions in free recall than in other episodic memory tasks (Aleman,

Hijman, de Haan, & Kahn, 1999; Trenkle, Shankle, & Azen, 2007). That is, if participants have

difficulty retrieving episodic memories, this task is even more challenging in free recall, where

the cues are more minimal. Having established the defining properties of free recall and how

it is meant to approximate everyday life, we next turn to examining these properties in a more

controlled laboratory setting.

2 Assessing memory in a laboratory experiment

How might a researcher assess someone’s episodic memories? If a participant describes their ex-

periences but a researcher does not know what actually occurred, it would be difficult to assess

memory accuracy for such experiences. Thus, in a research setting, it is less common to query a

participant about their memories for episodes prior to the start of the research experiment. Rather,

usually a participant is presented with information in the laboratory, and is later tested on that

information. In this way, the researcher knows and controls the information that will be tested. Be-

cause a participant is presented with, and tested on, information from a specific time and place (i.e.

the experiment), this is assumed to draw on episodic memory processes, even if the experimental

stimuli are more well-controlled or artificial than everyday experiences. (The ecological validity

of this type of task is revisited in Free Recall In the “Real World”.)
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2 Assessing memory in a laboratory experiment

Free recall tasks almost always present stimuli as a sequence of words to make it easier for

participants to articulate what was presented (though free recall can also be conducted on more

complicated stimuli such as a sequence of complex images or even a movie). Each word, and each

list of words, can be considered its own episode, associated to a spatiotemporal context within

the experiment. Each word or item is considered a fundamental unit of memory representation.

Nonetheless, a word’s representation is usually assumed to be comprised of meaningful features

about that word, such as the font or color of the presented word, as well as semantic or emotional

information. However, most of the results can be generalized from words to other types of stimuli,

and thus the term item is used to refer to a presented stimulus. Regardless of how an item is

represented, results in this chapter are interpreted under the assumption that individual items are

encoded and retrieved from memory.

To present lists of items, early studies used the technology available at the time, such as using a

metronome to ensure that items were presented at a constant rate. In the past few decades presenta-

tions take place using a computer, presenting each item one at a time (Figure 5.5.1). A participant

usually performs multiple rounds of list presentation (encoding) and recall (retrieval) during a

given experimental session. It is often of interest which items the participant will remember, and

thus free recall tasks are designed so that recall is not perfect. Some of the classic properties of re-

call dynamics break down when the lists are very short (e.g. Ward, Tan, & Grenfell-Essam, 2010),

and thus will not be considered in this chapter.

Before presentation of the first list, typically a participant is informed in advance that the pre-

sented information will be tested on a later memory test (termed intentional free recall). However,

this need not be the case, as sometimes there is concern that if the participant knows there will be

a memory test, this will influence how the words are studied. In incidental free recall, participants

may be led to believe that they are studying information for a reason other than a pending memory

test. Although manipulations during encoding in free recall can influence memory, this chapter is

in Retrieval Processes because the influence of such manipulations manifest during retrieval.
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3 Overview of theories of free recall

In this chapter, results will be discussed according to broad classes of theories and the main prin-

ciples that divide those theories. One large divide in theories of free recall focuses on whether

memory is comprised of two memory “stores”—a short-term store and a long-term store—or

whether there is just a single store, operating on both shorter and longer time scales. The de-

bate between dual-store and single-store models extends beyond free recall to episodic memory

in general, though this debate is fueled by free recall effects (e.g. Davelaar, Goshen-Gottstein,

Ashkenazi, Haarmann, & Usher, 2005). Theories can also be divided based on their assumptions

of memory representations. Most models of free recall assume that representations of, and associa-

tions between, the presented items themselves can explain memory search phenomena. How these

representations are formed and stored can vary widely, but broadly speaking we can consider them

in two categories. Most models of free recall assume that individual items are stored in memory.

The item-item association strengths between any two items may be stored explicitly in memory

as well (e.g. Metcalfe & Murdock, 1981; Raaijmakers & Shiffrin, 1980) or implicitly through the

similarity between item representations (e.g. Brown, Preece, & Hulme, 2000). Although subse-

quent sections will explain how this works in practice, it is important to note here that the order in

which items are presented informs their strengths. That is, it is assumed that the last item on the

list preserves a representation consistent with being the final list item. By contrast, another theory

of item representations assumes that participants are actively but silently rehearsing list items dur-

ing presentation. Under this assumption, the order and number of rehearsals lay the foundation of

memory organization (e.g. Brodie & Murdock, 1977; Laming, 2009; Rundus, 1971; Tan & Ward,

2000). If a participant rehearses items after the final list item is presented, it is as if these items are

presented, albeit internally, to the participant.

In contrast to models assuming that item representations serve as the foundation of memory or-

ganization, another model category assumes that context is critical for organizational and search

processes (e.g. Bower, 1972; Howard & Kahana, 2002a; Murdock, 1997). In this way, each mem-

ory consists of the representation of the item representation and the context of the item, where con-
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4 Memory search during free recall

text is defined as the set of features surrounding, or not comprised of, an item. For instance, context

may include external features such as the experimental environment or timing of the episode, and

internal features such as the participant’s endogenous thoughts. If a model assumes context is crit-

ical to episodic memory, this context information is not necessarily stored at the expense of item

information. Indeed, models relying on item-item associations may nonetheless include a context

that changes with each list (e.g. Gillund & Shiffrin, 1984). However, some models assume that

context changes with each studied item in a list, due to changing internal thoughts and changing

time (e.g. Howard & Kahana, 2002a; Lehman & Malmberg, 2013; Murdock, 1997). By contrast,

other models assume that a long list of items are subdivided into groups or chunks, and each group

creates its own context (Farrell, 2012). For instance, in a list of 16 items, a chunking model would

group items together into smaller subsets of items such as 1-3, 4-7, 8-10, 11-14, 15-16. Each of

these classes of models are best understood through the lens of the free recall phenomena they are

meant to explain, described in the following sections.

4 Memory search during free recall

4.1 Recall initiation

Suppose a participant has been presented with a list of items, and now is prompted to recall as

many items from the list as possible, in any order. A researcher may instruct the participant to

say aloud, type or write their recalls. With these open-ended instructions, the burden is on the

participant to search through memory to initiate recall. A common pattern emerges if we consider

the probability of first recall as a function of the position the items were presented in the list, or

serial position (Figure 5.5.2). One can also consider probability of first recall as the proportion of

lists initiated at each serial position. If participants perform recall immediately after presentation

of the list (Figure 5.5.1A), they tend to initiate recall with a recently presented item, i.e. a later

serial position (Howard & Kahana, 1999; Ward et al., 2010).

All established models and theories of free recall can account for this well-established finding.
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Dual-store models assume that recently presented items are stored in a short-term memory store,

and that items in the short-term store are recalled first (Davelaar et al., 2005; Raaijmakers &

Shiffrin, 1980). For a single-store model, the explanation of this effect depends on its assumptions

of item representations. Some single-store models assume that information from the end of the

list (whether context or an item) is used to cue recall. In immediate free recall, this cue will be

similar to, and thus promote recall of, recently presented items (e.g. Howard & Kahana, 2002a).

By contrast, for single-store models that represent the relative similarity of each item, recently

presented items benefit from not having any items presented after them. In this way, recency items

share temporal similarity with fewer items, and thus are considered more distinctive. A model

assuming such a similarity structure, termed a distinctiveness model, assumes that more distinctive

items are more likely to be recalled (Brown, Neath, & Chater, 2007; Nairne, Neath, Serra, & Byun,

1997). As another explanation, rehearsal-based accounts assume that recently presented items have

been rehearsed recently, and thus are more accessible to be recalled first (Laming, 2006; Rundus,

1971; Tan & Ward, 2000).

In contrast to immediate free recall, participants are less likely to initiate recall with a recency

item when there is a delay between the list presentation and the recall test (Figure 5.5.1B). For this

type of task, termed delayed free recall, the delay may last several seconds to several minutes. It

may even require participants to perform the free recall test on a later day. To explain the reduced

recall of recency items in delayed free recall, dual-store models assume that the final list items are

displaced from the short-term store by the information intervening between the final list item and

the recall period (Davelaar et al., 2005; Grossberg & Pearson, 2008; Lehman & Malmberg, 2013;

Raaijmakers & Shiffrin, 1981; Shiffrin & Steyvers, 1997). As a result, these recency items are no

longer available to be recalled first. In single-store models assuming separate representations for

each item, the end-of-list distractor is assumed to displace the end-of-list cue, and thus the end-of-

list cue is less similar to items from the end of the list (Sederberg, Howard, & Kahana, 2008, see

also Bjork & Whitten, 1974). According to single-store distinctiveness models, with the passage

of time such as a delay, recency items are no longer as temporally distinct, and thus become less
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4 Memory search during free recall

discriminable or more confusable with other list items (Brown et al., 2007; Nairne et al., 1997;

Neath, 1993).

Most models of memory capture not just the reduced tendency to initiate recall with a recency

item, but also the tendency to initiate recall with an early list or primacy item, in delayed free

recall. The rehearsal-based account provides an intuitive explanation for this finding: Primacy

items benefit from more rehearsals. For instance, in a list of ten items, a participant can rehearse

internally the first presented item as they study each subsequent item. By contrast, the participant

has little opportunity to rehearse the final list item before the recall test. Thus, with a filled delay—

which prevents recency items from being rehearsed recently—primacy items are more likely to be

recalled.

For dual-store models, primacy items benefit from more time in the short-term memory store,

which may be due to more rehearsal time (e.g. Raaijmakers & Shiffrin, 1980). At the start of

a delayed free recall period, no items remain in the short-term store and thus the primacy items

are more likely to be recalled first. (The contribution of more elaborative encoding processes

and attention to promote memory arguably emerges at other serial positions as well, as discussed

further in List-Level Effects.) Other accounts of the primacy effect provided by dual-store models

have also been used by single-store models, because both sets of models assume that primacy

items are stored in long-term memory. By one approach, some models assume primacy items are

strengthened in memory because items at the start of the list receive more attention (Sederberg

et al., 2008) or are treated with a level of novelty which decreases as list presentation continues

(Farrell, 2012). These two approaches are not mutually exclusive, as items may receive more

attention because the start of a new list serves as a novelty signal. Finally, as another approach

unique to single-store models, the primacy items benefit from greater recall for the same reason

as recency items: they have fewer neighboring items (as no items are presented beforehand), and

thus may not suffer from as much competition. Although this assumption leads to increased recall

probability of primacy items, the model predictions of the magnitude of this increase are often

much lower than in the typical free recall experiment (e.g. Brown et al., 2007; Howard & Kahana,
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2002a).

Thus far, we have reviewed two ubiquitous findings in free recall initiation, and any good theo-

retical account can explain these findings. However, predictions of recall initiation between single-

store and dual-store accounts dissociate in continual-distractor free recall, where there is a distract-

ing task in between each presented item (Figure 5.5.1C). If there is a distractor after the last item,

then most dual-store models predict that this distractor replaces any end-of-list items in the short-

term store. Thus, recall initiation should be like delayed free recall, with reduced recall of recency

items. By contrast, single-store models make a qualitatively different prediction: Recall initiation

should be greater for recency items, more akin to immediate free recall. This prediction emerges

because every item is followed by a distractor, and thus all items have the same relative temporal

distinctiveness to one another as in immediate free recall. If there is the same amount of time in

between each presented item—whether filled by a distractor or not—single-store modes predict

that recall should begin with a recency item. The results are in line with single-store models, as

probability of first recall is typically greater for more recently presented items (Bjork & Whitten,

1974; Howard & Kahana, 1999; Laming, 1999; Watkins, Neath, & Sechler, 1989). Further, con-

sistent with the notion that it is more about the relative temporal distinctiveness of items, there

is evidence to suggest that the advantage for recency items depends on the ratio of the interitem

presentation time and final delay time, rather than the absolute time of the final delay (Nairne et

al., 1997; Neath, 1993; Kahana, 2012).

Taken together, consistent patterns emerge in recall initiation across participants, even though a

participant is free to recall the list items in any order. Recall initiation is influenced by the item’s

serial position combined with the presence of distractors. These results are explained more simply

by a single-store model of memory. Yet as we continue to review more findings in free recall, we

will also continue to discuss the strengths of different classes of models.
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4 Memory search during free recall

4.2 Recall organization

Having established the common findings for the first recalled item, one could next ask: What about

the second recall? In immediate free recall, dual-store models generally assume that recall contin-

ues with other items in the short-term store (e.g., Davelaar et al., 2005; Raaijmakers & Shiffrin,

1980), and chunking models assume that recall begins with recalling items in the final chunk (e.g.,

Farrell, 2012). After several recalls, however, all theories assume that items are retrieved from

long-term memory. We next characterize transitions from one item to another, assuming that both

items are recalled from long-term episodic memory. Such a characterization provides a window

into endogenous memory search, whereby a participant incorporates the prior recalled item to

navigate through their memories to recall another item.

Most analyses of recall transitions characterize the relationship between the just-recalled item

and the next-recalled item based on similarity. These analyses are motivated by two assumptions:

(1) a just-recalled item will help to cue recall of the next item; (2) this cue promotes recall of

other items sharing similar features to the just-recalled item. As one classic example of such an

analysis, Kahana (1996) examined how temporal similarity influences transitions, by examining

the difference in serial position or lag between pairs of successive recalls. For instance, consider

the sample list and recalls in Figure 5.5.3A. Recall of the items from serial position 1 then serial

position 3 would correspond to a lag =+2 as the transition moved forward 2 items in the list. Note

that the y-axis for this function is not recall probability, but rather conditional recall probability

(CRP), as the availability of recall must be taken into account. For example, from item 1, lag = −

1 is not possible, because this would refer to an item in (nonexistent) serial position 0. In addition,

transitions to previously recalled items are considered repetition errors and thus not possible. For

this reason, lag = 0 is undefined, as a transition at this lag occurs only if a participant recalls

the same item twice in a row. Altogether, this analysis examines the temporal properties of recall

transitions while taking into account which transitions are possible.

Despite the freedom to recall the items in any order, participants exhibit two striking regularities

in their temporal order of recall transitions in lists of unrelated words. First, participants exhibit a
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forward asymmetry effect, as at a given absolute lag value (e.g. 1), transitions are more likely in

the forward direction than the backward direction (e.g. +1 vs. -1), especially at smaller values of

absolute lag. Second, participants exhibit a temporal contiguity effect, or tendency to recall items

with smaller absolute values of lag (Figure 5.5.3B). This temporal contiguity effect also manifests

when examining inter-response times (IRTs), the amount of time it takes a participant to transition

between two successively recalled items. Figure 5.5.3C shows a typical plot of IRTs (commonly

termed latencies for this analysis) between two successive recalls as a function of lag. IRTs are

generally faster between items with smaller absolute lags, further underscoring that recall of one

item tends to facilitate retrieval of its temporal neighbors. The temporal contiguity effect is a ubiq-

uitous finding in free recall, present across a variety of experimental variables and manipulations,

even when there is a distractor between each presented item (for a review see Healey, Long, &

Kahana, 2019).1

As with the recency effect, most models can account for the temporal contiguity effect. Models

assuming direct associations between items provide an intuitive account of the temporal contiguity

effect, because recall of an item cues recall of other items with strong associations, including

strong temporal associations. However, these models must also assume that these associations are

stronger in the forward direction than the backward direction to produce the forward asymmetry

in the lag-CRP (e.g. Kahana, 1996). The forward asymmetry effect falls out more naturally from

a retrieved context model — a single-store model which assumes that a context representation

changes slowly with each studied or recalled item (e.g. Howard & Kahana, 2002a). In such a

model, recall of an item coincides with retrieving its temporal context. This leads to a context

retrieval cue that promotes recall of items with similar temporal context including the item’s just-

recalled neighbors. The forward asymmetry arises because temporal context is a recency-weighted

sum of presented items, and so the context of an item studied in serial position i is contained in the

context of the next item i+1, thus promoting its recall.

Temporal contiguity can also be explained by assuming that participants are actively but silently

1However, transitions may be more likely at the largest values of absolute lag, when participants transition between
the first and final list items (Farrell & Lewandowsky, 2008).
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4 Memory search during free recall

rehearsing items during list presentation. Here the argument is that, because participants tend to

rehearse items that were just presented, what seems like recall of successively presented items may

in fact reflect recall of successively rehearsed items. In support of this idea, when participants say

aloud the words that they are rehearsing, they tend to recall items in an order that reflects the order

in which they were rehearsed (Brodie & Murdock, 1977; Rundus, 1971; Tan & Ward, 2000; Ward,

2002). Nonetheless, the temporal contiguity effect is present even under experimental conditions

meant to minimize rehearsal (e.g. Howard & Kahana, 1999; Lohnas & Kahana, 2014), and thus is

challenging to explain entirely based on rehearsal patterns.

Models assuming a chunking or grouping structure also predict the temporal contiguity effect.

These models assume that recall of an item from one temporal group (e.g. item 16) will promote

recall of other items presented within the same group (e.g. item 15). Thus, when a participant

successively recalls neighboring items, this may simply reflect recalling the items in the same

group (Farrell, 2012; Lehman & Malmberg, 2013; Romani, Katkov, & Tsodyks, 2016). In a typical

free recall experiment, it is assumed that group size may vary by list and participant (though some

participants may formulate a particular organizational structure with practice; see Romani et al.,

2016), so it can be difficult to assess whether participants are indeed grouping items. Nonetheless,

models that assume list items are structured into a hierarchical temporal context representation —

where item position is subsumed into a group position, which is subsumed into list number — are

indeed able to capture the temporal contiguity effect in free recall (e.g., Farrell, 2012; Lehman &

Malmberg, 2013).

Because most models can account for the temporal contiguity effect, more nuanced temporal

analyses are needed to distinguish between classes of models. Although most models assume that

the just-recalled item dominates the recall cue, models differ in their assumptions of the contribu-

tion of earlier recalls to the cue. To discern the role of earlier recalls, Lohnas and Kahana (2014)

examined how the prior two recalls contributed to the current recall. Lohnas and Kahana (2014)

posited that, if only the just-recalled item contributes to the cue, then earlier recalls should not

influence the current recall. That is, recall of the item in output position p should only rely on the
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item in the prior output position p− 1, but not with earlier items such as p− 2. As an example,

suppose oar in Figure 5.5.3A serves as item p− 1. We might expect the next recall, p, to be a

neighbor of oar. However, might it matter that, before oar, the word ant was recalled, as opposed

to sea or cup? To put this another way, might p−2 and p−1 form a compound cue for the item in

output position p, or does just p−1 form the recall cue?

Lohnas and Kahana (2014) found that participants exhibited an enhanced contiguity effect when

p−1 and p−2 came from consecutive serial positions. Providing further support for the claim that

recall p−2 can have a direct impact on the current recall p, Lohnas and Kahana (2014) simulated

their findings with a model that assumed only the just-recalled item, p−1, influences the current

recall (Raaijmakers & Shiffrin, 1980; Sirotin, Kimball, & Kahana, 2005). Although this model

produces a temporal contiguity effect it does not predict a benefit for compound cuing, as shown

in Lohnas and Kahana (2014). Models in which prior items combine to form a compound cue

for the next recall naturally account for the observed dependence of recall on multiple past items

(Kimball, Smith, & Kahana, 2007; Polyn, Norman, & Kahana, 2009). Taken together, these results

suggest that prior items combine to form a compound cue for the next recall, even though the most

recently recalled item contributes more strongly to the cue.

Aside from temporal contiguity, other forms of contiguity may be present based on the similar-

ity structure of the presented list. Like the temporal order of the words, other properties may be

manipulated experimentally to influence similarity and thus transitions. For instance, in lists of

words where modality of presentation for each word could be auditory or visual, participants tend

to recall items in “clusters” of the same presentation modality (Hintzman, Block, & Inskeep, 1972;

Murdock, 1969). As another example, Polyn et al. (2009) examined how an encoding task influ-

enced recall organization. Participants performed a semantic decision for each presented word (e.g.

Does this word refer to something living or nonliving?). Although participants performed only one

task with each presented word, in some lists they performed two different tasks, switching back

and forth with the type of decision for every few words. Polyn et al. (2009) found that participants

were more likely to transition between items studied with the same encoding task than different
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4 Memory search during free recall

encoding tasks. Further, Polyn et al. (2009) found that IRTs were faster between words presented

with the same encoding task. Although items were more likely to be recalled successively from

the same task irrespective of their temporal position on the list, transitions were most likely be-

tween items in the same “train” of items from the same task, i.e. those items with shared temporal

and shared task information. In this way, different forms of similarity can contribute to contiguity

effects.

Rather than impose additional manipulations on the word during encoding, another classic ap-

proach is to examine the similarity structure inherent in the words themselves. For instance, when

participants are presented with lists containing emotionally positive, negative or neutral words, par-

ticipants are more likely to transition between items of the same emotional valence (Long, Danoff,

& Kahana, 2015; Talmi, Lohnas, & Daw, 2019). Contiguity effects have also been characterized

by presenting participants with words from semantic categories, such as fruit or tools. With such an

experimental set-up, if a list is comprised of words drawn randomly from several different semantic

categories, participants tend to recall items in “clusters” of the same category (Bousfield, Cohen,

& Whitmarsh, 1958; Kahana & Wingfield, 2000; Polyn, Erlikhman, & Kahana, 2011; Romney,

Brewer, & Batchelder, 1993) and exhibit faster IRTs when transitioning between items of the same

category (Pollio, Richards, & Lucas, 1969; Patterson, Meltzer, & Mandler, 1971). In parallel to

the temporal contiguity effect, these results could be explained by assuming that when an item is

retrieved from a specific semantic category, this category information contributes to the cue used

to retrieve other items from memory. As a result, this promotes recall of items from the same se-

mantic category (Polyn et al., 2011). According to a rehearsal account of this effect, presentation

of an item from a specific semantic category promotes rehearsal of items from the same category,

and the shared rehearsal time between items of the same category promotes their successive recall

(Rundus, 1971).

Beyond broader semantic categories of words, participants also organize their recalls based on

the semantic relationships between words, even in lists of words where semantic relatedness is

meant to be minimized. That is, whereas the aforementioned categorical relationships are consid-
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ered all-or-none, it is also possible to quantify pairwise similarities of words on a continuous scale.

For instance, consider the words lemon, apple, twig and tunnel. With broad categories, lemon and

apple are both fruits and so are in the same semantic category, but lemon is not in the same category

as twig or tunnel. By contrast, one could also quantify the semantic associations, such that lemon is

most related to apple, less related to twig, least related to tunnel. Although semantic categories are

assumed to be more universal across human participants, there is inevitably individual variability

in semantic representations. Yet several metrics have been used to quantify these semantic rela-

tionships, and provide reasonable interpretation for free recall analyses. These metrics may rely

on the co-occurrence of words in texts (e.g. Cilibrasi & Vitanyi, 2005; Landauer & Dumais, 1997;

Milne & Witten, 2008), or may be formed by asking participants about word associations (Nelson,

McEvoy, & Schreiber, 2004; Steyvers, Shiffrin, & Nelson, 2004).

In one of the earliest examinations of a continuous measure of semantic similarity in free recall,

Howard and Kahana (2002b) found that the conditional probability of transitioning to an item

increases with its semantic similarity to the just-recalled item. This finding, termed the semantic

contiguity effect, has been replicated several times (Healey, Crutchley, & Kahana, 2014; Howard,

Venkatadass, Norman, & Kahana, 2007; Long & Kahana, 2017; Talmi et al., 2019; Zaromb et al.,

2006). Indeed, even in lists of categorized items, there is evidence for recalling items successively

based on their shared semantic similarity (Romney et al., 1993).

Given that temporal and semantic information can both influence recall, there may be compe-

tition in memory among strong temporal associates and strong semantic associates. For instance,

consider the list and recall sequence shown in Figure 5.5.3A, after the participant has just recalled

oar. Based on the temporal contiguity effect, we might predict that a neighbor of oar, such as fork

or sea, with lags +1 and −1, respectively, might be recalled next. However, based on semantic

contiguity, we might expect a highly semantically similar item, such as boat, to be the next recall,

despite have a larger temporal lag of +7. Of course, it is not possible to predict which item will be

recalled next for every possible transition and participant. Yet researchers are interested in under-

standing how the competition among items influences memory search, and ultimately which item
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is recalled.

As one example of the tradeoffs in semantic and temporal organization, if lists contain pairs of

strongly associated semantic items presented far apart, participants tend to recall the semantically

related items, leading to reduced temporal contiguity (Healey et al., 2019). This is assumed to

reflect the competition between associations during retrieval. For instance, in a list with words of

fruits and tools, recall of apple may cue recall of orange or lemon more strongly due to their shared

semantic information, even if hammer were presented just after apple. Although for the purposes

of this chapter, the intuition is that different forms of organization may compete to influence recall,

processes at encoding undeniably impact recall organization. If, during list presentation, partic-

ipants are oriented to the semantic features of presented words, this leads to decreased temporal

contiguity during recall (Long & Kahana, 2017; Healey & Uitvlugt, 2019). Presumably, this ori-

entation promotes attention to, and thus encoding of, semantic information. As a result, semantic

information plays a stronger role in guiding memory search during recall.

Do temporal contiguity and semantic contiguity essentially reflect the same effect, with differ-

ent dependent variables? Howard and Kahana (2002b) posited that, if temporal contiguity and

semantic contiguity have similar properties, then a distractor should decrease temporal contiguity

and semantic contiguity. However, Howard and Kahana (2002b) found that semantic contigu-

ity decreased with longer distractor periods between items in continual-distractor free recall, yet

temporal contiguity remained intact. These results were interpreted as evidence that the semantic

information contributing to the recall cue is separable from temporal information contributing to

the cue. Building on this work, Morton and Polyn (2016) could best account for recall organization

with a computational memory model provided that semantic information and temporal information

were represented distinctly, and with different properties. In particular, the model assumed that the

temporal cue was context-based, relying on a richer representation of temporal information. By

contrast, the semantic cue relied on item representations without the context history of prior re-

calls. These results, consistent with the compound cuing effect of temporal information reported

by Lohnas and Kahana (2014), underscore the distinct representations of temporal information vs.
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semantic information in memory. In particular, whereas semantic information most likely influ-

ences a memory cue related to the just-recalled item only, the temporal information contributing

to the cue most likely contains a temporal history of recalled information. Thus, both temporal

contiguity and semantic contiguity would rely on relevant memory associations, yet the tempo-

ral information used to cue recall incorporates a richer history of past recalls. The semantic and

temporal contributions to the cue may encourage recall of different items.

In summary, both temporal contiguity and semantic contiguity reflect the influence of the re-

called item to promote recall of other items with shared features or attributes. Different dimensions

of similarity may lead to competition among to-be-recalled items, and may influence the recall cue

differently. Yet some properties increase the probability that an item will be recalled, irrespective

of its shared features with other items. Like contiguity effects, these properties inform which types

of information influence recall, and thus inform theoretical explanations of memory search.

4.3 Item-level effects

Thus far, we have reviewed recall initiation, and how recall of one item serves to cue recall of an-

other item. These recalls tend to be intuited based on the shared features and associations between

items, and reveal how such features and associations influence memory search. However, items

can have features that influence memory search and lead to improved recall, potentially bypassing

the need to be associated strongly to the just-recalled item. For instance, a word repeated in a list

is more likely to be recalled than a word presented once, and this probability increases with the

number of items intervening between the repeated presentations (Cepeda, Pashler, Vul, Wixted,

& Rohrer, 2006; Ebbinghaus, 1885/1913; Donovan & Radosevich, 1999; Madigan, 1969; Melton,

1970). The underlying cause of this latter effect, termed the spacing effect, continues to fuel debate

in psychology and neuroscience.

Items are also better remembered if they are presented at a slower presentation rate (e.g., Bhatarah,

Ward, & Tan, 2009; Glanzer & Cunitz, 1966; Murdock, 1962). By one explanation, more study

time may enable more time to rehearse the presented item, and to rehearse other items in the list. To
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examine this explanation, researchers instruct participants to say aloud any of their own rehearsals

of study items during list presentation. Consistent with this rehearsal-based account of slower pre-

sentation rate, if participants rehearse aloud, an item is more likely to be recalled if it was rehearsed

more times (Brodie & Murdock, 1977; Rundus, 1971), or if it was rehearsed more recently (Tan

& Ward, 2000). This intuition may also be applied to dual-store models, which assume that items

benefit by having more time to be rehearsed in the short-term store and increase their associative

strengths to other items in the store (Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1980).

Regardless of the explanation for improved recall with increased study time, this increase is

magnified for earlier list items (Brodie & Murdock, 1977; Grenfell-Essam, Ward, & Tan, 2013).

Further, irrespective of study time, recall is greater for early list items than mid-list items. This

effect, termed the primacy effect, is present in almost all free recall experiments (Murdock, 1962;

Spurgeon, Ward, & Matthews, 2014). The primacy effect is exhibited in the serial position curve,

which displays probability of recall at each serial position (Murdock, 1962), with elevated recall

probability at early list positions (Figure 5.5.4).

In brief, the theoretical explanations for the advantage of recall initiation of primacy items in

delayed free recall can also be applied to explain the primacy effect of overall recall in all distractor

conditions (see Recall Initiation). Due to temporal contiguity, the recall of one primacy item

promotes recall of its neighbors, which are also more likely to be primacy items. To distinguish

between accounts of primacy, the rehearsal-based account provides the relatively unique prediction

that conditions minimizing rehearsal (such as continual-distractor free recall) should reduce overall

recall for all items. Further, primacy items should be impacted the most, as these items also benefit

the most from rehearsal. These predictions are borne out in experimental data (Glenberg et al.,

1980; Marshall & Werder, 1972), and can be seen in Figure 5.5.4 by comparing recall between the

immediate and continual-distractor conditions. Dual-store models can explain the reduced recall

for primacy items by assuming they spend less time in the short-term store, thus weakening their

representations (e.g. Davelaar et al., 2005; Raaijmakers & Shiffrin, 1981).

In parallel to recall initiation, items from the end of the list, or recency items, are more likely
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to be recalled in immediate and continual-distractor free recall (Bjork & Whitten, 1974; Deese

& Kaufman, 1957; Howard & Kahana, 1999; Murdock, 1972). This effect, termed the recency

effect, is also apparent in Figure 5.5.4. According to single-store models, once recall begins with

a recency item (see Recall Initiation), recall of other recency items are more likely due to temporal

contiguity. Dual-store models account for the recency effect in immediate free recall by assuming

that all items from the short-term store are recalled first. However, dual-store models that fail to

predict properties of recall initiation in continual-distractor free recall also have difficulty capturing

the recency effect in this paradigm, yet can account for these findings if the long-term store operates

with the same explanation just provided for the single-store model (e.g. Davelaar et al., 2005).

Usually a free recall experiment uses words as stimuli, and word properties can influence re-

call probability. For example, recall is generally greater for words referring to something living

than nonliving (e.g., Popp & Serra, 2015; Nairne, VanArsdall, Pandeirada, Cogdill, & LeBreton,

2013). Free recall is also greater for words presented with auditory presentation than with visual

presentation (Murdock, 1969; Murdock & Walker, 1969). Some word properties are highly cor-

related and thus difficult to disentangle. For instance, words are more likely to be recalled if they

are more imageable (Paivio, Yuille, & Rogers, 1969), yet imageable words are also often more

concrete (Paivio, Yuille, & Madigan, 1968). To answer the question of whether this phenomenon

really reflects imageability or concreteness, however, may be left to those researching perception

or linguistics rather than memory. Indeed, to account for the influence of word properties on mem-

ory, some theories incorporate processes that occur prior to memory encoding, such as perception

or attention. Nonetheless, such properties can be important to control when creating stimuli for a

recall experiment.

Other word properties are more readily explained in the context of existing memory theories. For

instance, recall of a word is also influenced by the number of different “contexts” in which a word

occurs, termed context variability (Reder et al., 2000; Steyvers & Malmberg, 2003). To illustrate,

presumably there are a limited number of situations in which employee arises, and so this word has

low context variability, whereas youth has high context variability. Free recall is generally greater
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for words with low than high context variability (Hicks, Marsh, & Cook, 2005). It is hypothesized

that, for high context variability words, it is more difficult to rely on a unique association with the

“context” of the current list, as these words are already associated to many contexts. As a result, it

would be more difficult for a participant to determine whether a high context variability word was

presented on a studied list.

It is important to note that the item properties listed in this section influence recall irrespective

of the other types of items in that list. That is, an item may be presented in a mixed list, comprised

of items of more than one type, such as some words presented with an auditory presentation and

others with a visual presentation. By contrast, an item may be presented in a pure list consisting of

only one item type, such as visual items only. Intriguingly, some item properties influence recall

differently when the item is contained in a pure list or mixed list, as discussed in the next section.

4.4 List-level effects

Thus far, I have reviewed how memory search is influenced by associations between items, and

by item properties irrespective of associations. However, some item properties lead to improved

recall only when presented with, and associated with, other types of items. These properties thus

help to explain how items and their associations can influence memory search processes.

An examination of list-level properties typically involves two types of items and three types

of lists (Figure 5.5.5A). Items are classified based on their posited strength in memory, typically

termed “strong” and “weak”. For instance, strong items may be presented with spaced repetitions,

whereas weak items may be repeated in mass. Lists are comprised of a combination of strong and

weak items (mixed lists) or solely one type of item (pure strong or pure weak). In free recall, there

is generally a positive list-strength effect: Recall is greater for strong items in mixed lists than pure

lists, yet recall is greater for weak items in pure lists than mixed lists (Figure 5.5.5B; Malmberg

& Shiffrin, 2005; Shiffrin, Ratcliff, & Clark, 1990; Tulving & Hastie, 1972). This result can

be explained by intuiting that the recall cue evokes retrieval of encoded items, and these items

compete to be recalled. Whereas in a pure list a weak item competes only with other weak items,
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in a mixed list the strong items serve as stronger competition against weak items. Thus weak items

are less likely to be recalled when in mixed lists than in pure lists. In a similar way, a strong item

has fewer strong competitors for recall in a mixed list than in a pure strong list, and thus is more

likely to be recalled in a mixed list than a pure list.

Nonetheless, this explanation does not help to explain why stronger items benefit from greater

recall. Indeed, for some types of item manipulations, even when there is an advantage for posited

“strong” items in mixed lists (e.g., longer vs. shorter study time, emotionally negative items vs.

neutral items), recall probability of pure strong lists may be equivalent to recall probability of pure

weak lists (Malmberg & Shiffrin, 2005; Talmi & McGarry, 2012). This effect, sometimes termed

the list-composition effect, has a similar intuition to the list-strength effect, with strong items in

mixed lists benefiting from weaker competitors during retrieval, or more elaborate encoding pro-

cessing during study (McDaniel & Bugg, 2008). Such an explanation can also help to explain why

features of an item that a priori may not be considered “strong” can nonetheless influence recall

depending on the composition of the list. For instance, consider a list of words where some are

presented in blue or green. In this case, neither green nor blue would be strong; recall probability

for a list of all blue words should be equivalent to a list of all green words. However, if a list is

comprised of words presented all in green except for one item presented in blue, then the blue item

is more likely to be recalled. A memory advantage for an item that stands out in a list—irrespective

of whether that item would benefit from such an advantage in pure or mixed lists—is termed the

isolation effect or distinctiveness effect (Schmidt, 1991; von Restorff, 1933; Wallace, 1965). The

results of the list composition effect would look similar to those of the list-strength effect shown in

Figure 5.5.5B, except recall in the pure lists is not significantly different between strong and weak

items. Also similar to the list-strength effect, the list composition effect is more pronounced in

free recall than in other types of memory tests (McLaughlin, 1968; McDaniel & Einstein, 1986).

As noted when discussing the primacy effect, one explanation is that the distinct item benefits

from greater attentional or novelty processing, but the cognitive and neural mechanisms underly-

ing the mnemonic benefit to the distinct item are still debated. Regardless, the stronger influence
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of list-level changes in free recall—whether manifest as the distinctiveness effect or list-strength

effect—suggest that competitive memory search processes play a role in these effects.

The list-length effect is another prevalent list-level effect in free recall, so termed because as

list-length increases, participants tend to recall a smaller proportion of items yet a larger number

of items (e.g. Murdock, 1962; Ratcliff, Clark, & Shiffrin, 1990; Roberts, 1972; Ward et al., 2010).

The list-length effect is present in nearly every memory paradigm (e.g. Strong, 1912). However,

the magnitude of the effect varies, and thus is explained differently, depending on the paradigm. In

free recall, one account again relies on the competitive nature of retrieval: As more items compete

in memory for recall, the less likely it is that any one item will be recalled. By another account,

with increasing list-length more items are presented between an item’s presentation and the recall

period, and thus an item is less likely to be recalled simply due to the passage of time. This latter

account also provides an intuition for findings that recall probability of recency items does not

seem to decrease with list-length (Kahana, 2012). The immunity of recency items to list-length

has been interpreted to fit with the intuition of a separate, protected short-term store for these items.

Yet single-store models can predict this effect as well, because the end-of-list cue used to initiate

recall does not vary with list-length; the similarity of the final items to the end of the list is the

same irrespective of the number of preceding items (e.g. Brown et al., 2000; Polyn et al., 2009).

Word frequency—how frequent a word occurs in everyday use—has served as an intriguing

variable for memory performance in general and for free recall in particular. With pure lists of

high-frequency words, participants generally exhibit greater recall than pure lists of low-frequency

words (Hall, 1954; Sumby, 1963). High-frequency words are thought to be more easily associated

to other list items, thus promoting their recall (Balota & Neely, 1980). However, using mixed

lists of high-frequency words and low-frequency words, some experiments yield greater recall of

high frequency words (Balota & Neely, 1980; Hicks et al., 2005), some yield greater recall of

low frequency words (DeLosh & McDaniel, 1996; Merritt, DeLosh, & McDaniel, 2006; Ozubko

& Joordens, 2007), and some do not find significant differences (May, Cuddy, & Norton, 1979;

Ozubko & Joordens, 2007; Ward, Woodward, Stevens, & Stinson, 2003; Watkins, LeCompte,
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& Kim, 2000). Further adding to this puzzle, the results in item recognition are generally more

consistent with greater memory accuracy for low-frequency than high-frequency words, in both

pure lists and mixed lists (Criss & Malmberg, 2008; Estes & Maddox, 2002; Glanzer & Adams,

1985; Gorman, 1961; Heathcote, Ditton, & Mitchell, 2006; Malmberg, Steyvers, Stephens, &

Shiffrin, 2002; Shepard, 1967). Improved memory for low-frequency words in item recognition

(and free recall, if found) is usually assumed to reflect greater attentional processing (Malmberg

& Nelson, 2003; Rao & Proctor, 1984). Yet it is not clear why recall properties of word frequency

are inconsistent in free recall.

To help reconcile these findings, Lohnas and Kahana (2013) evaluated free recall of words in

mixed lists across a range of ten word frequency bins, rather than simply low and high frequency

words. They found that free recall was a U-shaped function, with greater free recall for very low or

very high word frequency. Lohnas and Kahana (2013) suggested that some of the inconsistencies

of prior free recall studies may reflect the choice of word frequency values. That is, the choice of

frequency values used for “low” and “high” frequency could influence the results. Although it is

not possible to query all past studies, it may be that the values used as “high” frequency in some

studies may be numerically and qualitatively much lower than others, thus leading researchers to

draw different conclusions. Regardless, the properties of word frequency on free recall are akin to

other variables discussed in this section, whereby the influence depends not only on the word itself

but also on the overall composition of the list in which the word is contained.

4.5 Errors

4.5.1 Intrusions

If one is “searching” through the contents of memory for a particular set of items, such a search

may yield an item, but not necessarily a correct item. In free recall, a correct item refers to an

item presented on the most recent list, and so a participant may mistakenly recall an incorrect

item outside of the current list. To account for this possibility, theories and models of memory

search often assume that once an item is retrieved from memory, it undergoes additional editing
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or monitoring to ensure it is a correct item. That is, memory retrieval is a two-stage process: (1)

in response to a cue, a participant generates an item from memory; (2) a participant applies a

recognition test to ensure that the generated item is correct for the current task (Bahrick, 1970;

Postman, 1976; Lohnas, Polyn, & Kahana, 2015).

As an analogy for this theory, termed generate-recognize theory, suppose the task is not retriev-

ing items from memory, but rather consider my task as a graduate student to retrieve my keys from

my jacket pocket once I arrived home. Before finding the keys, I might encounter my phone. Of

course, I do not give up searching, nor do I try to get into my home using my phone. Rather, I set

my phone aside and continue to search my pockets. I would eventually find a key and try to use

that key to get inside. However, I needed two keys: one for the outer door to my apartment build-

ing, and one for the door within the building to my apartment. These two keys were similar, and

so sometimes I would mistakenly try to use the inner apartment key to unlock the outer apartment

building door. Eventually, however, I would find the correct key. These three types of retrieval

from my pocket correspond to the three types of retrieval that may occur according to generate-

recognize theory, where retrieving something from my pocket parallels generating or retrieving an

item from memory, before overtly reporting it on a memory test; recognition refers to the assess-

ment of whether the retrieved or generated item should be used in the current situation (whether to

unlock a door, in the analogy, or to report the item in the case of a memory test). Walking through

these three examples in relation to memory then: (1) Retrieving my phone instead of my key is

analogous to being able to generate an item, yet recognizing the item is not correct. In such a case,

a participant thinks of the item silently but does not report it. (2) Mistakenly retrieving the wrong

key, and then trying to use that key, parallels generating an item which fails to be recognized as

an incorrect item. In this case, a participant commits an intrusion, reporting an item that was not

presented on the current list. (3) Using the correct key is meant to reflect a correct item; when it is

retrieved a recognition process is performed to confirm that it is from the correct list, after which

it is reported.

Considering this second case, intrusions in free recall are broadly classified into two categories.
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One type of intrusion, termed extra-list intrusion (ELI), refers to a recalled item that is not presented

in any experimental list. The second type of intrusion is a result of the typical free recall, in which

participants typically study a list of unique items then perform free recall. Next, they study another

list of items, distinct from the first list, and then perform free recall of those items, and so forth.

In this way, each is comprised of a distinct set of items from each other list, is treated as its own

isolated memory test; performance is averaged across lists under the assumption that each list of

items does not interfere with the others. However, if a participant mistakenly recalls an item from

a previously presented list, this is termed a prior-list intrusion (PLI). Healthy younger adults rarely

make PLIs or ELIs. Indeed, many descriptive and computational models of free recall assume

that memory “resets” between lists, such that recalled items are only from the current list. Such

models can be remarkably accurate even though this simplifying assumption is not realistic (any

participant certainly has more words in their memory than a single list of words from a free recall

experiment, typically only 10-40 words!). Nonetheless, a comprehensive model of free recall

should take these intrusions into account. Indeed, it is impressive that the average participant can

focus their recalls on current-list items while suppressing the interference from past memories,

termed proactive interference.

Despite their relatively low occurrence, analyses of intrusions provide useful insights into mem-

ory search processes. In particular, participants are more likely to recall PLIs from a more recently

presented list than a more distant list (Murdock, 1961, 1974; Unsworth & Engle, 2007; Zaromb et

al., 2006). This finding parallels within-list recency effects, in that more recently presented infor-

mation is more likely to be recalled. Yet why might participants misattribute items from past lists

to the current list? One explanation comes from the externalized free recall paradigm (Kahana,

Dolan, Sauder, & Wingfield, 2005; Lohnas et al., 2015; Unsworth & Brewer, 2010; Unsworth,

Brewer, & Spillers, 2010, 2013b; Zaromb et al., 2006). In this paradigm, participants recall aloud

any word that comes to mind while performing free recall, and press a key immediately after the

recall of an item they believe was not on the most recent list (indicating a “rejection”). According

to generate-recognize theory then, a rejection corresponds to an item that was generated but not
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recognized. Although participants recall overtly more PLIs in externalized free recall than stan-

dard free recall, PLIs from more recent lists are less likely to be rejections (Lohnas et al., 2015;

Unsworth et al., 2010). In other words, rejection probability decreases with list recency of PLIs

(and rejection probability is near 0 for correct items).

When a participant recalls a PLI from a more recent list, this also arguably reflects the temporal

contiguity effect on a longer timescale. To put this another way, if one considers the absolute list

lag between a current-list item and a PLI, the list lag is generally smaller. In the rare case that a

participant recalls two PLIs in a row, these PLIs are more likely to be from nearby lists (Lohnas et

al., 2015). Further, if the two PLIs are from the same list, the within-list lag of PLI pairs tend to

have a smaller absolute value, consistent with the temporal contiguity effect seen for correct items

(Lohnas et al., 2015). Thus, PLIs exhibit temporal contiguity both within lists and across lists,

suggestive of stronger temporal associations between these items. These contiguity effects are

predicted by a retrieved context model assuming temporal representations on several timescales,

including within a list and across lists (Howard, Shankar, Aue, & Criss, 2015). These contiguity

effects are also predicted by a retrieved context model with a single temporal context changing

slowly with each item (Lohnas et al., 2015). As a result, items presented closer in time have more

similar temporal context states, whether considered on the timescale of within a list or across lists.

Altogether, PLIs inform memory effects across timescales longer than a single list.

In addition to their shared temporal information with the current list, PLIs may also reflect

shared semantic associations to current-list items. For instance, Zaromb et al. (2006) found that, if a

participant recalls successively a correct item then a PLI, on average the PLI was more semantically

similar to the just-recalled correct item than any other correct item. Further, when several lists of

items are all drawn from the same semantic category, such that items from preceding lists are

highly semantically similar to items on the current list, this also increases the number of PLIs

(Loess, 1967; Wickens, 1970). Altogether, PLIs may be mistaken as correct items due to the same

reasons that participants recall correct items: their shared similarity with other correct items.
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4.5.2 Repetitions

Aside from intrusions, a participant may err by recalling the same word twice during the recall

period, but such repetitions are relatively rare (e.g. Kahana et al., 2005). These types of errors raise

the question of how one can keep track of which items one already recalled, to avoid recalling those

items again. Although the cognitive processes involved to prevent repetition errors are usually

assumed to involve metamemory processes beyond the scope of episodic memory and memory

search, this type of recall is important to consider for how recall ends, as described in more detail

in the following section.

4.6 Recall termination

If a participant is tasked with recalling as many words as possible, why might they decide to

stop searching through memory for another recall? Like recall initiation and recall transitions, this

process is informed by analyzing the types and timing of recalls. How these analyses are conducted

partially depends on how the recall period ends. Whereas in some free recall experiments, the

participant decides when to end the recall period, other experiments have a recall period of a fixed

length. In this case, the recall period should ideally be set to be longer than the participant needs.

However, a participant may stop recalling items before the recall period actually ends. What makes

a participant decide that even with more time, they will be unable to recall more items?

In one of the earliest examinations of recall termination, Murdock and Okada (1970) found that

the IRT prior to the final recall was much longer than for earlier recalls. Although this finding is

upheld regardless of whether participants are given a fixed amount of time to recall or can control

when to end recall, the IRT is generally shorter when participants have control (Hussey, Dougherty,

Harbison, & Davelaar, 2014). Further, if a participant chooses when to end recall, then the time

between the final response and the choice to end recall becomes faster with more items recalled

(Dougherty, Harbison, & Davelaar, 2014; Harbison, Dougherty, Davelaar, & Fayyad, 2009). At

the same time, IRTs tend to increase with the number of recalled items (Murdock & Okada, 1970;

Wixted & Rohrer, 1994; Unsworth, 2007). These findings provide support for the intuition that,
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as more items are recalled, it becomes more challenging to use the current memory cue to retrieve

items that have not yet been recalled.

Further support for the above intuition arises from classifying the type of the final recalled

item. Recall termination is more likely following an error than a correct recall, and in particular

termination is more likely following a repetition than an intrusion (Laming, 2009; J. F. Miller,

Weidemann, & Kahana, 2012; Unsworth et al., 2010). These recall errors most likely cue retrieval

of other errors. As a result, the participant may infer that they cannot retrieve any more correct

items. As noted in Unsworth et al. (2010), increased recall termination following a sequence of

errors is also consistent with findings from Harbison et al. (2009) that recall termination is faster

after more recalls. In this way, recall termination is influenced by the total number of retrievals or

retrieval errors a participant makes. Indeed, some models of memory assume that recall stops after

a fixed number of failed retrieval attempts (e.g. Raaijmakers & Shiffrin, 1980). Nonetheless, the

cognitive processes involved in recall termination remain to be characterized fully.

4.7 Consistency and variability in free recall

Thus far, we have discussed some of the most ubiquitous effects in free recall. Although most

participants exhibit recency, primacy, temporal contiguity and semantic contiguity (Healey et al.,

2014), there is individual variability in the extent to which each participant exhibits these effects.

The interdependence of these effects provides insight into how and why they vary. As noted above,

the tradeoff between semantic contiguity and temporal contiguity is suggestive of the competitive

nature of retrieval. Further, participants exhibiting greater overall recall tend to exhibit greater

temporal contiguity (Sederberg, Miller, Howard, & Kahana, 2010), as well as faster recall latencies

and fewer intrusions (Unsworth, 2007, 2009a, 2009b). Participants with greater free recall also

tend to have greater working memory capacity and fluid intelligence (Unsworth, 2009a, 2009b).

With these results, does a higher-performing participant have a greater “memory ability”, gener-

alizing across working memory and free recall tasks? A line of work by Unsworth and colleagues

suggests a more complex story. Unsworth and Spillers (2010) found that individuals with greater
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working memory capacity exhibited larger improvements in free recall under intentional than inci-

dental recall instructions, suggesting that working memory capacity relates to effective strategies

during encoding (Bailey, Dunlosky, & Kane, 2008). In addition, individuals with lower working

memory capacity exhibit reduced temporal contiguity (Spillers & Unsworth, 2011), slower recall

latencies, recall more intrusions (Unsworth, 2009b), and are more susceptible to proactive interfer-

ence (A. L. Miller & Unsworth, 2018). Combined, these results suggest that individuals with lower

working memory capacity have more difficulty searching through memory to recall correct items.

This may reflect difficulty with generating the proper recall cues, retrieving the proper items, and

the generate-recognize process (Unsworth & Brewer, 2010).

Beyond cognitive abilities, research has also focused on variability in free recall with age. Older

adults generally perform worse on tasks of episodic memory (Light, 1991), but this is more strik-

ing in free recall than other episodic memory tasks (e.g. Schonfield & Robertson, 1966). When

participants are presented with two lists and then instructed to recall items from either list, older

adults are more likely to initiate and recall from more distant positions than younger adults, in-

cluding items from the previous list (Wahlheim & Huff, 2015). This suggests that older adults

may recall fewer current list items in standard free recall because they have more difficulty fo-

cusing memory search to current-list items. Further, in standard free recall, older adults tend to

exhibit decreased temporal contiguity, produce fewer correct recalls and more intrusions (Kahana,

Howard, Zaromb, & Wingfield, 2002). Using an externalized free recall procedure (see Section

4.5.1), Kahana et al. (2005) found that older adults generate more intrusions, and are more likely to

misattribute intrusions to the current list. These results further underscore deficits in using retrieval

cues effectively. Differences in memory by ability and across the lifespan are discussed at length

in Individual Differences and Development.
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5 Memory search beyond free recall

5 Memory search beyond free recall

This chapter is entitled Free recall and memory search, but one doesn’t need to perform free recall

to search through the contents of memory. Other paradigms have provided useful insights that

complement and support findings from free recall. We now turn to some of the most relevant and

informative paradigms of episodic memory search aside from free recall.

Before turning to these paradigms, however, it is important to address whether the fundamen-

tal difference between free recall and these paradigms occurs at encoding, not during search and

retrieval. For instance, if a participant is told about the type of memory test in advance, this

might lead to different strategies during encoding, which may suffice to explain, or even con-

found, differences attributed to memory search. This possibility can be explored with studies in

which participants are told to study a list of items for an upcoming memory test. They may be

informed about the type of memory test in advance (pre-cued) or informed about the test after list

presentation (post-cued). If knowing the test in advance changes participants’ encoding strategies,

then performance should differ with test cue type. However, many critical properties of memory

paradigms remain relatively unchanged between pre-cued tests and post-cued tests (e.g. Bhatarah,

Ward, & Tan, 2008; Bruder, 1970; Cox & Criss, 2017; Deese, 1957; Wahlheim & Huff, 2015). As

a result, differences across memory paradigms cannot be driven solely by anticipating the type of

test. I revisit this issue with cued recall, but first discuss paradigms more similar to free recall.

5.1 Probed recall and part-list set cuing

Analyses of free recall often query how recall of one item cues recall of another item. Of course, in

these analyses, both items of interest are recalled by the participant. By contrast, in probed recall

the researcher presents the participant with an item, and a participant is instructed to recall an item

in response. In this way, the researcher controls, and can asked more focused questions about,

recall cues and which items are expected to be recalled (termed targets). In probed recall, it is

most common for items to be presented one at a time, as in free recall (see Figure 5.5.1A). During
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test, the researcher will present an item, and ask the participant to recall a specific target, such

as the item presented after the cue. With such a set-up, termed forward probed recall, the serial

position curve exhibits a primacy effect and recency effect analogous to free recall (Murdock,

1968). Further, providing a compound cue of the prior two items leads to greater recall than just

providing the prior item (Posnansky, 1972; Kahana & Caplan, 2002), consistent with findings of

greater free recall for item i+2 when items i and i+1 comprised the prior two recalls (See section

5.5.4.2; Lohnas & Kahana, 2014).

The part-list cuing paradigm further builds on the design of providing a set of cues, rather than

one cue. In this paradigm, participants are presented with a list of items one at a time as in free

recall (see Figure 5.5.1A). Next, they are re-presented with a subset of the list items as cues (if

they studied the list of words in Figure 5.5.1A, then the presented cues might be sea, boat, fork).

All of the cues are displayed at once, and while viewing such cues they perform free recall of the

remaining items, i.e. excluding the cues (Roediger, 1973; Roediger, Stellon, & Tulving, 1977;

Rundus, 1973; Slamecka, 1968). Slamecka (1968) introduced this paradigm to adjudicate between

two possible outcomes of recall performance, when compared to standard free recall: (1) If associ-

ations between items are not independent, then providing some items should lighten the burden on

participants to generate their own cues, and thus should increase recall; (2) If associations between

items are independent, then providing additional items should leave recall unchanged.

Surprisingly, Slamecka (1968) found that recall was worse in part-list set cuing, and this result

has been replicated several times (Roediger, 1973; Roediger et al., 1977; Rundus, 1973; Slamecka,

1968, see also Serra & Nairne, 2000). However, this result can be explained using the logic of

the list-strength effect, if we view the part-list cue set as repeated items. It is as if the participant

is presented with a mixed list of repeated (strong) items and weak (once-presented) items, and the

participant needs to recall the weak items (Raaijmakers & Shiffrin, 1981; Roediger et al., 1977).

Indeed, the part-list set cuing paradigm is arguably more challenging than free recall because

participants must not only keep track of the current-list items, but must also keep track which

items were cues, to avoid recalling any of the items from the part-list cue set (Hastie, 1975). By
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another explanation, reduced recall in part-list set cuing occurs for a similar reason that recall

termination is more likely to follow a recall error, in particular a repeat (Rundus, 1973). By this

reasoning, repeating some of the items as cues may elicit retrieval of other cue items, and hinder

recall of the remaining items. Regardless of the mechanism, this unexpected finding challenged

existing theories of associative memory when it was first introduced. This paradigm also highlights

how subsequent retrieval is influenced differently if a participant retrieves an item from memory,

or is re-presented with the item. Such differences are explored further in Chapter 11.1.

Free recall, probed recall, and part-list cuing provide insight into the competition between items

and associations during memory search. Probed recall imposes more control over the items to be

recalled, and thus more control over which associations are most useful for recall. For example,

forward probed recall would lead to more correct recalls if a participant used forward temporal as-

sociations, rather than semantic associations, to guide memory search. Other memory paradigms

impose further structure on which associations best serve memory search, allowing researchers to

focus on a smaller set of associations. As described in the following section, this localist perspec-

tive on associations reveals additional properties of memory retrieval and memory search.

5.2 Cued recall

Whereas some theories of free recall assume associations are formed between items within a list,

the cued recall paradigm takes a step back from this interconnected structure, and addresses the

more simple task of associating one item to another. Some of the findings from cued recall lay the

groundwork for assumptions of associations in free recall, whereas other results stand in opposition

to intuitions of free recall effects. In cued recall, it is most common to present items two at a time

in pairs during encoding, and thus cued recall centers on the single association formed between two

items. During the recall phase, a participant is cued with one item from the pair, and must recall

that item’s associated pairmate, or target. Whereas in free recall any list item is a correct response,

in cued recall of pairs there is typically just one correct response to a cue. Both paradigms restrict

recall to information presented during a specific time range, whether that time spans an entire list
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(free recall) or coincides with a specific pair of items (cued recall).

Cued recall allows for a more flexible design of the timing of presentation and recall test. One

possible design for cued recall has the study phase of all possible pairs, and then has the test

phase requiring recall of a target given the cue (Figure 5.5.6A). This design most closely parallels

free recall. However, sometimes in cued recall participants study and recall the same list of pairs

multiple times. In this situation, it is possible to have a mixture of study and test items together.

That is, a participant can be presented with two items at once, to be tested later (study) and the very

next event could just be a cue item requiring a target response (test), or vice versa. In addition,

sometimes researchers use what is termed the anticipation method, which essentially combines

study and test for the same pair: A participant just views the cue, and recalls a target, but before

moving onto the next pair the target is re-presented. Unless stated otherwise, below we assume

that the study/test structure parallels free recall, allowing for easier comparison between the two

paradigms.

5.2.1 Comparisons of cued recall and free recall

5.2.1.1 Memory encoding and memory representations Before comparing recall performance

between cued recall and free recall, it is worth clarifying similarities between these paradigms

with respect to encoding of memory representations. According to some accounts, presentation

during cued recall is like free recall, where each item from a pair is studied separately, and items

within a pair are studied closer together in time than items from different pairs (Howard, Jing,

Rao, Provyn, & Datey, 2009). However, there is also evidence against the view that each item in

the pair is represented separately. If items were represented separately, for instance, transitions

between adjacent items in cued recall should parallel those of free recall. As described in Recall

Organization, in free recall participants generally exhibit a forward asymmetry, such that recall of

item i is more likely to be followed by recall item i+ 1 than i− 1. From this intuition, one may

expect cued recall to be greater when cuing in the forward direction, using a pair’s first item as

a cue, (e.g. cuing with ant in Figure 5.5.6A), when compared to cuing in the backward direction
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(e.g. cuing with cup in Figure 5.5.6A). However, cued recall performance is not significantly

different when cuing in the forward or backward direction (Asch & Ebenholtz, 1962; Ekstrand,

1966; Kahana, 2002). One possible explanation for these results is that, like free recall, each pair

of items shares separate forward and backward associations, yet unlike free recall, the associations

are equal in the forward and backward directions. If this explanation were true, then memory for a

given pair when tested in the forward direction should not be correlated with memory for the same

pair when tested in the backward direction. However, Kahana (2002) found that cued recall for

a given pair was highly correlated between the forward and backward directions. Taken together,

these results work against the hypothesis that each item within a pair (in cued recall) is equivalent

to an individually presented item (in free recall).

Indeed, the symmetry of associations for item pairs within cued recall has been argued to reflect

the holistic nature of cued recall pairs (Asch & Ebenholtz, 1962; Kahana, 2002), such that each

pair of items forms an inseparable, holistic representation. In this way, being cued with one item

from the pair does not evoke retrieval of that specific item and its pairmate, but rather evokes

retrieval of item pair representations that include the item cue. Yet if item pairs are represented

together in this way, inseparably and without regard to the order in which they were presented, then

participants should exhibit poor memory for the order of presentation within each item pair. Kato

and Caplan (2017) assessed this possibility, and found that order memory was better than predicted

by chance, thus suggesting that order information is retained in memory for each pair. At the same

time, models assuming that item order is preserved overpredicted the correlation between this order

memory and other measures of association memory. Thus, these results provide some room for

each of the cued recall accounts described thus far, as either completely separable items or as a

holistic pair.

Whereas in free recall each word is usually considered its own episode and memory representa-

tion, in cued recall it remains debated whether each word, or set of words, forms the fundamental

unit of representation. This has implications for how the memory cue and memory target are

represented, and thus also has implications for what is being ‘searched for’ in response to a cue.
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Regardless, cued recall requires a more focused memory search than free recall, as specific target

item(s) are associated with each memory cue. Parallels between cued recall and free recall are

more straightforward to intuit under the assumption that each item is represented separately. Com-

bined with the aforementioned evidence that it is reasonable to assume each word has a distinct

representation, I will make this assumption below unless noted otherwise.

5.2.1.2 Recall and retrieval dynamics Intuitively, cued recall and free recall are relatively sim-

ilar: In both paradigms, participants are presented with lists of items, then must recall items as-

sociated with that list — whether any item from the list (free recall), or a specific item based on

a cue (cued recall). Thus it is perhaps unsurprising that an individual’s ability to perform well on

both tasks is related. In a comprehensive examination of episodic memory tasks including free

recall and cued recall, Cox and Criss (2017) found a strong correlational relationship of individual

accuracy in cued recall and in free recall. Further, Cox and Criss (2017) found that individual

items benefiting from greater free recall were also more likely to be retrieved during cued recall.

Beyond individual items, certain types of items benefit from greater cued recall as well. For in-

stance, just as free recall is greater for low contextual variability words (Hicks et al., 2005), cued

recall is greater when the cue is a low contextual variability word (Criss, Aue, & Smith, 2011).

Like free recall, a low context variability item is assumed to benefit from being associated to fewer

pre-experimental contexts. This benefit could manifest during encoding, with associations being

more readily made, but could also occur at retrieval, with less competition between a low con-

text variability cue and other potential target items. As another shared item-level effect between

cued recall and free recall, cued recall performance is greater when targets are concrete rather than

abstract words (Paivio, Walsh, & Bons, 1994).

Several list-level effects present in free recall are also present in cued recall, including the spac-

ing effect (Glenberg, 1976), the recency effect (Murdock, 1967) and the list-length effect; the

theoretical accounts of these effects are generally similar in both recall paradigms. In addition,

a form of the temporal contiguity effect is present in cued recall. When a participant mistakenly
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recalls another list item as belonging to the pair, presumably this is due to the cue evoking a target

with similar features to the correct target. In cued recall, an incorrectly recalled item is more likely

to be from a nearby pair (Caplan, Glaholt, & McIntosh, 2006; Davis, Geller, Rizzuto, & Kahana,

2008). Further, similar to PLIs in free recall, if in cued recall an incorrectly recalled item was not

presented on the most recent list, it is more likely to have been presented on a nearby list (Davis

et al., 2008). This suggests that beyond the within-pair association, temporal associations may be

formed across pairs. However, these temporal effects are weaker than in free recall; some models

of cued recall account for the levels of intrusions without assuming that they come from temporal

associations (e.g. Mensink & Raaijmakers, 1988). An intrusion may also be semantically similar

to the correct item, suggesting that semantic associations influence memory search in cued recall.

Despite the similarities between cued recall and free recall, in cued recall there is generally no

list-strength effect (Wilson & Criss, 2017), or if it is present, it is weak (Ratcliff et al., 1990). As

described in List-Level Effects, in free recall the intuition was that recall is competitive, and so

strong items should be more challenging to recall when competing only with strong items, than

when competing with a combination of strong and weak items. By contrast, in cued recall the

intuition is that the cue serves to narrow memory search from a set of list items to just one target

item. Thus, unlike free recall in which many strong (and weak) items compete for recall, in cued

recall the competition from other list items is weaker (Shiffrin et al., 1990).

5.2.2 Beyond free recall

Analyses of memory search often focus on the associative strengths between items, and how such

strengths influence competition between items. Whereas in free recall a researcher relies on the

participant’s recalls to probe such associations, in cued recall a researcher can address more tar-

geted questions about specific associations. In one of the simplest set-ups for querying competition

between items, one item is paired with two other items (also see Chapters 6.1 and 6.2).

As an example in Figure 5.5.6A, an item A (ant) associated with two different items B and C

(ant-box in List 1, ant-cake in List 2). A participant learns the first pair (A-B) to a criterion. Then,
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after being presented with A-C, a participant is probed with item A, and may recall either of A’s

associates. In this task, termed “modified free recall”, at first participants continue to recall B rather

than C, indicative of proactive interference. The proactive interference driven by the similarity

between item pairs (i.e. the overlapping A of A-B, A-C) is not unlike the proactive interference

exhibited in free recall when items are drawn from the same semantic category across lists (Loess,

1967; Wickens, 1970). However, if A-C is presented additional times, recall of C becomes more

likely than B (Briggs, 1954). This is consistent with the intuition that as C is presented more

times and more recently, the proactive interference from B is no longer as strong. Rather, C can

be viewed as interfering with the retrieval of B. This type of interference, imposed from newer

information (A-C) retroactively on earlier information (A-B), is termed retroactive interference.

Intriguingly, recall increased for B and decreased for C over increasing delays of 1-3 days

(Briggs, 1954). Reduced recall of C is surprising because recently presented information is gener-

ally better remembered. Improved memory for more distant information at a delay, as is the case

with B here, has been termed “spontaneous” recovery. This phenomenon, also present in animal

learning, is so termed to convey that such recovery also seems relatively surprising and occurs

without external influence. As a comprehensive account of spontaneous recovery, Estes (1955) in-

troduced a computational model which formalized stimulus representations as vectors of features

that fluctuate randomly and slowly over time. Thus, items presented nearby in time are more likely

to share more of these overlapping features.2 However, after a sufficient amount of time (and thus

fluctuation), as well as with a minimal amount of forgetting, this model predicts the seemingly

spontaneous recovery of earlier associations.

These results speak to which association is strongest to A: B or C. However, these results can-

not distinguish whether A’s association to the unrecalled item is simply weaker or is altogether

forgotten. If C is recalled, for example, B might be retrieved covertly but not recalled overtly, or

B might be forgotten. To distinguish between these possibilities, Barnes and Underwood (1959)

instructed participants to recall both of the items when cued with A (termed “modified modified

2This model greatly informed, and shares much of the intuition of, temporal context representations in retrieved
context models.
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free recall”; bottom panel of Figure 5.5.6A). Barnes and Underwood (1959) found that, after initial

A-B presentations, as the number of A-C presentations increased, then the number of recalls for B

decreased. Because participants could recall both B and C but tended to recall C only with more

A-C trials, they interpreted their results that learning of A-C may lead to “unlearning” of A-B.

Following this logic, for a given item A, the tradeoff between recall of A-B and A-C should

occur at the level of individual A-B, A-C items, leading to a negative correlation between not just

the average across all B’s and C’s, but rather recall of B matched to its corresponding C. However,

attempts to find such correlations have been unsuccessful (DaPolito, 1967; Kahana, 2000). This

has been interpreted as evidence against the notion that learning the A-C association leads to di-

rect inhibition of the A-B association. Rather, it is thought that changes in associations may occur

beyond those linking a specific A-B, A-C pair, such as at the level of the entire list of A-B items

and A-C items. As one explanation of this finding, a model of cued recall presented by Mensink

and Raaijmakers (1988), building on the model of Raaijmakers and Shiffrin (1980), assumes that

the memory representation of each item pair includes context elements which fluctuate between

lists (c.f. Estes, 1955). This model accounts for several critical findings in modified modified free

recall, underscoring the importance of list-level changes and their influence on memory representa-

tions. Thus, despite the importance of forming associations between pairs in cued recall, list-level

representations may still be influential as in free recall.

This section has explored how cued recall informs memory search beyond free recall. Most of

these insights leverage the control over the recall cue and the target recall. In cued recall, there

is typically one correct response to each presented item, yet presenting the recall cues makes this

task much easier. The next section explores a task where there is also just one correct recall to each

cue, yet the participant is responsible for providing the cues as well.

5.3 Memory search in serial recall

The temporal contiguity effect in free recall demonstrates that participants form temporal associa-

tions between items, and that these associations guide recall. The serial recall paradigm provides
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another approach to analyze temporal associations in episodic memory. In this paradigm, partici-

pants are instructed to recall as many items from the just-presented list, but must recall the items in

the serial order in which they were presented. Thus, a schematic for immediate serial recall would

look identical to Figure 5.5.1A, except that the screen with asterisks would serve as a cue to recall

as many items as possible in their presented order. With only one correct sequence of recalls per

list, the serial recall paradigm demands temporal organization beyond free recall. Because in serial

recall there is only one “correct” ordering, analyses in this paradigm tend to focus on recall errors

rather than correct recalls. This section focuses on findings most relevant to memory search, and

the curious reader is encouraged to read Chapter 5.3.

Due to the similarities in task demands, serial recall and free recall share several effects. For

instance, in serial recall overall accuracy is greater with shorter list length, longer presentation

rate, shorter word length and for concrete or imageable words (Baddeley, Thomson, & Buchanan,

1975; Bhatarah et al., 2009; Paivio et al., 1969; Walker & Hulme, 1999). Further, in serial recall

the lag-CRP has the same two pronounced features as in free recall: temporal contiguity and

forward asymmetry (Bhatarah et al., 2008, 2009; Klein, Addis, & Kahana, 2005). Because serial

recall requires recalling the items in their presented order, it is somewhat of a natural consequence

that temporal contiguity is high. Further, an item mistakenly recalled out of order is more likely

to be from a neighboring temporal position of the correct item (e.g., Henson, Norris, Page, &

Baddeley, 1996; Lee & Estes, 1977; Surprenant, Kelley, Farley, & Neath, 2005), similar to the

temporal contiguity effect in free recall. Also like free recall, temporal contiguity is reduced in

lists comprised of items related along nontemporal dimensions, such as phonologically similar

items (e.g. Watkins, Watkins, & Crowder, 1974) or lists comprised of semantically similar items

(e.g. Murdock & vom Saal, 1967). However, whereas in free recall reduced temporal contiguity

may not come at the cost of overall recall, in serial recall this hinders participants’ performance to

recall the items in order.

Although theories of free recall can be used to explain effects in serial recall, no single account

can explain all of the phenomena present in serial recall. Further, a popular theory and type of
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model of serial recall is typically only used for serial recall but not other recall tasks. This theory,

termed positional coding theory, assumes that each presented item is associated to a positional

code. For instance, consider the third item presented in a list, Item 3. Item 3 would be associated

with the positional code Position 3. Recall of Item 3 would lead to retrieval of the next positional

code, Position 4, which then leads to recall of the item associated with Position 4. Thus far, we

have not needed such a positional assumption to explain recall results, and so such an assump-

tion may seem unnecessary. However, several findings in serial recall work in favor of positional

coding theory. As one striking example, if a PLI is recalled in place of a correct item in serial

recall, the PLI is more likely to correspond to same serial position as the correct item (Conrad,

1960; Henson, 1998; Melton & Irwin, 1940; Melton & von Lackum, 1941; Osth & Dennis, 2015).

This finding is straightforward to explain if one assumes that the positional code is shared among

items in the same serial position across lists, yet it is difficult to explain assuming item-item and/or

item-context associations drive recall. This finding also raises the question of under which circum-

stances positional or item information serves as the focus of memory search.

Serial recall and free recall also differ in the initiation of memory search. In free recall a partici-

pant may begin with any current-list item that comes to mind, and in an immediate test participants

tend to initiate recall with a recently presented item (see Recall Initiation). By contrast, in serial

recall a participant must begin with the first list item. In this case, an end-of-list cue might not be as

helpful to begin recall. So, how might participants search through memory to retrieve the first list

item? Although theoretical accounts of serial recall are discussed elsewhere (Chapter 5.3), the next

section discusses a variant of the free recall paradigm in which participants must recall items from

the list before the most recent list. Thus, this paradigm also requires searching through memories

for temporally distant items, and provides intriguing insights to memory search processes.

5.4 List-before-last paradigm

Recall paradigms help to illuminate the competition and interference between items in memory.

In free recall, where participants are tasked with recalling items from the current list, it is more
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challenging to study forgetting and the retroactive interference from current information on past

information. The list-before-last paradigm reveals influences of retroactive interference, because

participants are not asked to perform free recall of items from the most recent list. Instead, par-

ticipants are asked to recall as many items as possible in any order, from the list presented before

the last list (termed the target list; Figure 5.5.6B). Like free recall, this task requires recall of items

associated with a restricted range of time. Like delayed free recall, information was presented

after the list of to-be-remembered items. However, in this paradigm the distracting information

includes other list items, which may be tested later. In this way, retroactive interference is imposed

by the list of items presented intervening between a target list presentation and target list recall

(termed the intervening list). List-before-last recall shares some similarities with free recall, such

as a list-length effect (Shiffrin, 1970), yet recall is generally lower than in standard free recall (e.g.

Unsworth, Spillers, & Brewer, 2012). In this task it may be more challenging to create effective

retrieval cues, which may be driven by the retroactive interference from intervening-list items.

Most models and theories of free recall assume that the current state of memory is used to cue

other memories, and the items with the strongest associations to the current memory are from

the list of interest. However, this is not an ideal strategy for the list-before-last paradigm; such

an approach would lead to recall of items from the intervening list, not the target list. Some

models assume that participants associate a list of items to a list context, and that this list context

is reinstated according to task instructions (Jang & Huber, 2008; Lehman & Malmberg, 2009).

Based on qualitative patterns of recalls and response times, Unsworth and colleagues asserted that

participants can reinstate the target-list context, but this reinstatement is noisy and thus allows for

intervening-list intrusions (Unsworth et al., 2012; Unsworth, Brewer, & Spillers, 2013a). This

view is consistent with a retrieved context model approach, which assumes that retrieved target

items reinstate their associated target-list context, but context reinstatement is imperfect (Lohnas

et al., 2015). Alternatively, according to a rehearsal-based account, a subset of target-list items are

rehearsed during presentation of the intervening list, and the rehearsed items are readily accessed

at the beginning of recall (Ward & Tan, 2004).
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In addition, the list-before-last paradigm can help to adjudicate between theories of forgetting

in free recall. As noted in List-Level Effects, the list-length effect can be explained by assuming

that memory decays over time, and so with more list items a larger proportion of items will be

forgotten, especially for items presented earlier in the list. Alternatively, the list-length effect can

be explained by assuming that memory search is competitive, and so as more items “compete”

to be recalled, a smaller proportion of items are recalled. Shiffrin (1970) introduced an elegant

set of manipulations to distinguish between these theories. These manipulations are conveyed in

Figure 5.5.6B. Consider Lists 1 and 2, where a target list then an intervening list is presented, then

a target-list recall period. Although this is also true of Lists 2 and 3 (where now List 2 is the target

list), between Lists 2 and 3, list-before-recall of List 1 is performed. Without recall in between

lists (Lists 1 and 2), Shiffrin (1970) found that target-list recalls decreased with longer intervening

list-length. This is not so surprising given that recall generally decreases with increasing delay.

Strikingly, however, when participants performed recall between presentation of the target list and

intervening list (Lists 2 and 3), target-list recall did not change with intervening list-length. This

suggests that the amount of forgetting cannot be explained by the number of intervening items

between presentation and recall. Shiffrin (1970) thus posited that forgetting reflects a failure in

memory search and retrieval processes (but for a rehearsal-based account, see Ward & Tan, 2004).

Follow-up studies have examined why recall mitigates retroactive interference from the interven-

ing list. Sahakyan and Hendricks (2012) presented participants with triplets of lists as in Figure

5.5.6B, but manipulated the retrieval difficulty of List 1 by presenting this list 1 hour, 24 hours,

or 72 hours prior to the other lists. With increasing delay, recall from List 1 decreased, which

Sahakyan and Hendricks (2012) interpreted as increasing difficulty to retrieve List 1 items. How-

ever, the delay manipulation of List 1 did not affect target-list recalls (List 2) or intervening-list

recalls (List 3), suggesting that recall of List 1 hinders target-list retrieval irrespective of the diffi-

culty of List 1 recall. Jang and Huber (2008) also manipulated the type of memory task in between

the target list and intervening list. Intriguingly, they found that when participants performed a

recognition memory test (in Figure 5.5.6B, performed on List 1), the influence of intervening-list
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length was the same as no test between lists, where target list recall decreased with increasing

intervening-list length. Further, Jang and Huber (2008) could account for these results using a

multinomial model that assumed the recognition test did not elicit retrieval of test items and their

surrounding context to the same extent as free recall. These findings, combined with those of

Sahakyan and Hendricks (2012), provide strong evidence that episodic context retrieval is critical

to reducing the retroactive interference of the intervening list-length on target-list recall.

More broadly, the list-before-last paradigm demonstrates how episodic retrieval can lead to en-

coding or updating of memory representations, which in turn influence the associations and repre-

sentations of intervening-list items. Thus far, we have treated encoding and retrieval as two distinct

phases, but of course in everyday life this distinction is not always so clear. In the next section, I

describe this issue further, as well as other issues related to the ecological validity of free recall.

6 Free recall in the “real world”

A free recall experiment in a laboratory setting is meant to be a well-controlled version of episodic

memory, but concerns have been raised that the experimental set-up is not ecologically valid (e.g.

Hintzman, 2011, 2016). As noted in the previous section, a simplifying assumption in most free

recall studies regards the assumptions of encoding and retrieval: It is commonly assumed that

memory “encoding” occurs during the presentation phase, and that “retrieval” from memory oc-

curs during the recall phase. Of course, if the recall period had no memory encoding, then the

participant shouldn’t remember anything about the recall periods after the experiment was over!

Further, during the encoding phase, experimenters rely on participants to retrieve information from

memory regarding any experimental instructions. Nonetheless, the simplistic view of distinct en-

coding and retrieval phases arguably does not interfere with interpretation of free recall results (for

an alternate view see Hintzman, 2011). Yet without assuming that the process of memory search

influences encoding processes, some experimental manipulations are challenging to explain (for

instance, see Chapters 6.2 and 11.1).
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6 Free recall in the “real world”

As another point raised in concern of ecological validity, participants usually know in advance

that they will later be tested on their memory for specific items, and thus may adopt unusual

or atypical strategies that they do not use in everyday life. These concerns can be minimized

by using a faster presentation rate, as this latter is thought to help prevent elaborative encoding

processes such as rehearsal. Faster presentation tends to reduce recall for nonrecency items (e.g.

Brodie & Murdock, 1977; Glanzer & Cunitz, 1966; Tan & Ward, 2000; Wixted & McDowell,

1989). However, it may not be possible to fully dissociate how much of this reduced recall reflects

reduced rehearsal and artificial experiment strategies, as opposed to less time to encode the items.

As another approach, a participant might only be told after being presented with the list of words

that their memory will be tested, termed an incidental memory test. In incidental free recall, the

temporal contiguity effect is drastically reduced (Healey, 2018; Nairne, Cogdill, & Lehman, 2017).

These results suggest that participants’ encoding strategies during list presentation contribute to

recall organization, as well as which items are recalled.

Further criticism focuses on the timing and stimuli in an experiment versus everyday life. With

respect to timing, whereas list presentation and the recall test typically take place on the same day,

episodic memories may be retrieved on longer time scales, even years later. In addition, recalling

which items were presented during a particular experimental list is argued to a be qualitatively

incomparable to recalling life events that were experienced during a particular place and time.

This set of differences, spanning memory encoding, representations and retrieval, lead some to

argue that effects from recall tasks cannot be generalized to everyday episodic memories.

Of course, only some researchers make these arguments; most if not all recall experiments are

conducted under the assumption that the results would advance our understanding of episodic

memory. As described in the Introduction, one can also make the case that recall tasks are eco-

logically valid. Beyond theoretical or philosophical arguments, however, several studies have at-

tempted to link experimental list-learning experiments with more realistic memory tests.

Recent work has helped to mitigate some of concerns regarding the ecological validity of free

recall. Moreton and Ward (2010) asked participants to perform free recall of autobiographical
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events, and then date the events. Consistent with the recency effect, participants were more likely

to recall more recent events. Consistent with the temporal contiguity effect, participants were more

likely to successively recall events that occurred nearby in time, whether considered on a timescale

of weeks, months, or years. Rather than relying on participants’ memories of the time associated

with each event, Uitvlugt and Healey (2019) had participants recall news headlines, which could

be associated with objective dates. Consistent with findings in free recall, Uitvlugt and Healey

(2019) found a temporal contiguity effect between successively recalled headlines.

Several studies measuring neural activity of memory retrieval further support the ecological

validity of free recall tasks. In these studies, each participant wears a camera while going about

everyday life, and either the participant or the camera automatically takes pictures (Cabeza et al.,

2004; Hodges, Berry, & Wood, 2011; Milton et al., 2011; Nielson, Smith, Sreekumar, Dennis,

& Sederberg, 2015). The participant later performs a memory task on pictures from their camera

while their brain activity is recorded. Many of the active brain regions during retrieval in these

studies are also more active when performing memory retrieval in a free recall experiment (e.g.

Burke et al., 2014; Long et al., 2019; Sederberg et al., 2007).

As a clever bridge between classic recall experiments and everyday episodic memories, Cortis

Mack, Cinel, Davies, Harding, and Ward (2017) presented participants with one word every hour

on their phones, and then tested participants an hour after the final word presentation. Critically,

when performing free recall participants exhibited a temporal contiguity effect and a list-length

effect. In addition, in a serial recall condition there was a noticeable primacy effect and error

patterns consistent with prior studies. However, although this set-up is most similar to continual-

distractor free recall, and thus a primacy effect and recency effect would be expected, both effects

were small. Future work remains to explore the boundary conditions of applying experimental

findings to everyday life.
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7 Summary and conclusions

7 Summary and conclusions

Given how much remains unknown about memory encoding and memory storage, it may seem

premature to devote so much research to processes that rely on encoding and storage, including

memory search and retrieval. Yet characterizing properties of retrieval also provides theoretical

benchmarks and constraints for memory encoding and storage. For instance, several findings in

this chapter highlight the role of temporal information in memory organization of free recall. If

the memory test is immediate, participants are more likely to recall recently presented items, and

even to initiate recall with a recent item (e.g. Deese & Kaufman, 1957; Murdock, 1962; Ward et

al., 2010). The increased recall for recently presented information extends even to recall errors, as

when a participant mistakenly recalls an item from an earlier list, such an item is more likely to be

from a recent list (Lohnas et al., 2015; Murdock, 1961, 1974; Unsworth & Engle, 2007; Zaromb

et al., 2006). Further, when participants are tasked with performing free recall of the list before the

most recent list, they recall fewer items than in standard free recall (e.g. Unsworth et al., 2012),

suggesting that it is easier to retrieve more recently presented information. Thus, the advantage

attributed to recently presented information—exhibited during memory retrieval—provide strong

support that temporal representations are encoded and utilized to guide memory search.

Analyses of recall transitions provide further insight into memory retrieval, as well as the stored

representations used to guide memory search. A participant is more likely to transition between, or

recall successively, items with shared features. For instance, recalls are more likely between two

items with shared semantic information (Howard & Kahana, 2002b; Kahana & Wingfield, 2000;

Polyn et al., 2009), or items with shared temporal information arising from being presented nearby

in time (Kahana, 1996; Healey et al., 2019; Polyn et al., 2009). All leading theories and models of

memory assume that the association between any two items is informed by their similarity. With

respect to transitions, recall of one item may promote recall of other items with shared features or

stronger associations.

Memory search in recall tasks is also influenced by properties of an item irrespective of its as-

sociations to other items. Free recall commonly uses words as items, and word properties can
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influence memorability. Further, recall is improved by more general properties such as the rate at

which items are presented (Bhatarah et al., 2009; Glanzer & Cunitz, 1966; Murdock, 1962), or

by repeating an item within a list. In addition, some properties reflect an item’s position in the

presentation list. As one example, recall is greater for items presented in the first few serial posi-

tions (Murdock, 1962; Spurgeon et al., 2014). This effect, termed the primacy effect, has several

possible explanations. Early list items may benefit from rehearsing items more often or more re-

cently (Brodie & Murdock, 1977; Rundus, 1971; Tan & Ward, 2000), or from greater attentional

processing (Sederberg et al., 2008). Attention is also hypothesized to contribute to the isolation or

distinctiveness effect, defined by improved memory for a single item with features distinct from all

other items in the list (such as a different color; for reviews see Schmidt, 1991; Wallace, 1965). Yet

this explanation fails to explain how or why attention influences memory. In addition to attention,

this chapter has touched on other cognitive processes that arguably border on memory, such as

deciding when to stop attempting to search through memory. A full characterization of episodic

memory would be incomplete without a better understanding of these additional processes.

Free recall is an ideal paradigm to characterize memory search because of the range of possible

answers: So long as the item was presented in the current list, it is considered a correct response.

This means that memory search could yield one of several correct recalls. By contrast, other

paradigms such as cued recall, serial recall, and probed recall, there is only one correct recall

in response to each memory cue. In free recall, there is strong evidence for greater competition

between all current-list items, presumably because any one of them could be correct. The results

from other recall paradigms both reinforce and complement those of free recall, as having more

experimental control over the memory cue and the expected response can be advantageous. For

instance, whereas in free recall a participant may form associations from one item to several other

items, in cued recall participants typically are meant to remember items in pairs. This more limited

scope of one association between two items has revealed additional properties of competition and

interference between associations. Yet probing memory for a specific association does not inform

which associations are strongest, or if items are remembered yet lack proper associations. Free
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7 Summary and conclusions

recall provides more insight into the competitive nature of associations, and allows for all possible

items to be recalled irrespective of their associations to other items. Free recall also conveys how an

individual participant’s internal representations and associations drive memory search. At the same

time, the reliance on endogenous representations and cues, rather than exogenous experimental

cues, makes this task more demanding.

The results described in this chapter serve to characterize general properties of memory tasks as

they relate to memory search. Further, these results can motivate and refine theoretical accounts of

the cognitive underpinnings of memory search. Although several models have been developed to

explain episodic memory tasks, no one model can account for all findings. Regardless, the classic

and well-replicated findings of free recall serve as a benchmark for any new model. This will be

particularly important as many current models and theories are limited to one type of memory task

(e.g. free recall but not cued recall). A theory that can only account for a subset of results is, at

best, limited in scope; at worst, it may make assumptions that would not withstand all properties

and paradigms of episodic memory.

Episodic memory is critical to everyday life. The free recall task is arguably the most open-

ended assessment of episodic memory, providing minimal external cues or direction. For partici-

pants, the open-ended nature of free recall can make this task more challenging, as well as more

sensitive to deficiencies in episodic memory. For researchers, this flexibility provides a more de-

tailed set of responses from participants. Analyses of what participants recall, as well as the timing

and orders of their recalls, can be used to discern how information is encoded, organized, and

retrieved. Of course, the free recall paradigm is one of many tasks assessing episodic memory,

and in an experimental setting operationalizes a simplistic form of episodic memory. Results from

free recall experiments, when combined with approaches that query other aspects of memory and

employ more realistic stimuli, serve to characterize how one can search through the vast contents

of memory to retrieve the proper episode.

47



Figure Captions

Figure 1: Free recall set-up and conditions. In free recall, participants are presented with a list

of items, then must recall overtly as many items as possible, but are free to do so in any order

they wish. In the figure, the cue to begin recall is indicated by asterisks, as participants are often

prompted to recall items with a series of asterisks flashing on the screen. Free recall is generally

classified by the type of distractor task a participant performs between item presentation and the re-

call period. A. Immediate free recall. Participants are presented with the to-be-remembered items

one at a time, and must recall the items shortly after a brief interval following the last presented

item. B. Delayed free recall. Between presentation of the last list item and the recall period, a

participant performs a distractor or filler task. C. Continual-distractor free recall. In between

each item presentation, a participant performs a distractor task.

Figure 2: Initiation in free recall. Probability of initiating recall of each item as a function of its

studied position in the presented list (serial position), for the 3 free recall conditions illustrated in

Figure 1. Data are from Experiment 2 of the Penn Electrophysiology of Encoding and Retrieval

Study (PEERS). The delayed and continual-distractor conditions refer to the lists with distractor

periods of 16 s.

Figure 3: Temporal contiguity effect in free recall. A. Schematic for calculating temporal

contiguity. A sample list of presented items and their associated serial positions is shown along

with a calculation of lag, or difference in serial positions between two successively recalled items.

B. Conditional response probability of recall as a function of lag. See text for details. C.

Conditional response latency as a function of lag. See text for details. Data are from the 16 s

delayed free recall condition reported in Experiment 2 of the Penn Electrophysiology of Encoding

and Retrieval Study (PEERS).

Figure 4: Serial position effects in free recall. Probability of recall as a function of each item’s

position in the presented list, or serial position, for the 3 free recall conditions illustrated in Figure
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1. Data are from Experiment 2 of the Penn Electrophysiology of Encoding and Retrieval Study

(PEERS). The delayed and continual-distractor conditions refer to lists with distractor periods of

16 s.

Figure 5: List-strength effect and list composition effect. A. List presentation. Sample list

presentation of the three types of lists included in analyses of the list-strength effect: pure strong

lists comprised of strong items only (items begin with ‘S’ and have thick outlines); pure weak

lists comprised of weak items only (items begin with ‘W’ and have thin outlines); mixed lists

comprised of strong and weak items. B. Idealized results. The list-strength effect is characterized

by greater memory for strong items than weak items in mixed lists. The list-composition effect is

characterized by greater memory for strong items than weak items in mixed lists and equivalent

memory in pure weak lists and pure strong lists.

Figure 6: Other recall paradigms. A. Cued recall and variants. In the most common form of

cued recall, participants are presented with pairs of items. Cued recall: After presentation of a list

of item pairs, memory is tested by presenting one item from the pair (cue item) and requesting the

participant recall of the cue item’s pairmate (target item). Modified free recall: After the first list,

participants are presented with another list of item pairs, in which the first item from each pair is

from List 1, and the second item in each pair is new. Next, participants may be asked to recall

one item: the new associate, the old associate, or whichever one comes to mind first. Modified

modified free recall: Following presentation of List 2, participants are instructed recall both of an

item’s prior associates. B. List-before-last recall. Participants are required to recall items from

the list before the last (termed the target list), in contrast to standard free recall which requires

recall of the most recently presented list (here, termed the intervening list). In this example, during

List 1 recall, List 1 is the target list and List 2 is the intervening list; during List 2 recall, List 2

becomes the target list and List 3 is the intervening list.
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